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Abstract

The paper presents the results of solving the problem of identifying a non-stationary surface load acting on an

axisymmetrical hemispherical shell with a rigidly fastened edge. The inverse problem is solved by using the non-classical

theory of shells and Tikhonov’s regularization method.
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1. Introduction

The results of solving the inverse problems in the mechanics of a deformed solid find wide application,

e.g. in exploratory design, when refined data on external non-stationary loads acting on structural com-

ponents during their service are required. Availability of such information allows to effectively solve design

problems due to the possibility of in-depth investigation of the deflected mode of a mechanical system,

thereby ensuring the required reliability and durability of the structure. This problem is especially crucial

for components of structures operating under conditions of non-stationary impulse loads of the shock and

explosive action type.

At present, effective method of solving inverse problems in identifying external force actions are being
intensively developed. At this, the source data are values, which are indirect manifestations of the sought

for functions, and which can be obtained experimentally. The solutions of non-stationary problems of

such kind for rods are known in the literature (Krasnobaev and Potyetiunko, 1989; Lukianova, 1985;

Romanenko et al., 1989; Gladwell, 1984). Problems of such type for shells have been investigated far less,

and in the first place these are static problems. Let us mention first the works of Kylatchanov (1988) and

Tarasiuk (1993), which present the results of identifying an external action based on non-linear defining
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Fig. 1. The investigated mechanical system (a) and the equivalent one (b).
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equations for anisotropic media. The identification of a dynamic distributed load acting on a cylindrical

shell at non-axisymmetrical loading has been discussed in the paper (Yanyutin and Yanchevsky, 2000).
This paper presents the solution of the problem of identifying a non-stationary load acting on a

hemispherical shell with a rigidly fixed edge, the shell loading area being defined by the apex angle w in the

spherical coordinate system (Fig. 1a). Since this problem relates to the class of ill-posed problems in

mathematical physics, Tikhonov’s regularization method was used to find a stable solution. The paper also

presents the results of comparing the solution of the identification problem with experimental data in the

literature.
2. Direct problem

At the first stage of solving the inverse problem being investigated, we build the solution for a respective

straight line, whose solution results in a relationship between the experimental function euðc; tÞ and the load

QðtÞ being identified. The solution is based on the method of Yanyutin (1993), which consists in considering

a closed spherical shell, assuming the symmetry of its strain with respect to the equatorial plane (h ¼ p=2).
In so doing, the equality to zero of the tangential displacement of the median surface u0 and of the angle of
rotation of the normal in the meridian plane b in point h ¼ p=2 holds. Meeting the missing boundary

condition (w0ðp=2; tÞ ¼ 0, where w0 is the radial displacement) is ensured by applying an additional lumped

normal load T ðtÞ (Fig. 1b) to the shell in this point, the load being found when constructing the solution of

the direct problem.

By virtue of the accepted assumptions, the closed spherical shell is effected by the total normal load (Fig.

1b)
Nðh; tÞ ¼ QðtÞ � Hðj cos hj � j coswjÞ þ T ðtÞ � dðh � p=2Þ ðh 2 ½0; p
Þ;
where HðhÞ is Heaviside’s unit function; and dðhÞ is the delta-function.

In the theory of the Timoshenko type, the equations of motion for a spherical shell at its axisymmetrical

deformation have the form (Yanyutin, 1993)
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q
is dimensionless time; z ¼ cos h;
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1
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E, m, q are elastic constants and the shell material density; R, h are the median surface radius and the shell

thickness; k2s is the shear coefficient; k1 ¼ 1þ h2=ð12R2Þ; kr ¼ 1þ 3h2=ð20R2Þ.
With account of zero initial conditions, the solution of the system of equations (1) takes the form

(Yanyutin, 1993)
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where a0ðsÞ ¼ q0ffiffiffi
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at this
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 þ a8:
Let us note that in relationships (2) PnðzÞ, P 1
n ðzÞ are Legendre’s associated functions, and values

a2n;rðr ¼ 1; 2; 3Þ are the modules of the roots of a binary cubic equation
s6 þ e2ns4 þ d2ns2 þ m2n ¼ 0;
where
e2n ¼ A2n þ B2n þ C2n;

d2n ¼ A2nB2n þ B2nC2n þ A2nC2n � 2nð2nþ 1Þða2a6 þ a3a9Þ;

m2n ¼ A2nB2nC2n � 2nð2nþ 1Þða2a6C2n þ a3a9ðA2n � a6ÞÞ:
The unit strain euðc; tÞ on the inner surface of the shell is written in the form (Filin, 1987)
euðc; tÞ ¼
1
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� h
2
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; ð3Þ
it being considered as source data when solving the inverse problem.

After substituting expansions (2) into (3), we obtain a relationship, which can be written down in

operator form as
AQEQþ ATET ¼ E:
The force T ðtÞ, involved in this expression, is found from the condition w0ðp=2; tÞ ¼ 0, whose operator form
of expression can be presented as
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AQ0Qþ AT0T ¼ 0:
The operators AQEQ, AQ0Q, ATET and AT0T introduced earlier, denote the following, respectively:
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and function EðsÞ ¼ euðc; sÞ � ðR� h=2Þ=q0.
3. Inverse problem

As pointed out earlier, the solution of the inverse problem can be reduced to finding the approximate

solution of a system of integral Volterra equations of the 1st kind with a known right part:
AQEQþ ATET ¼ E;
AQ0Qþ AT0T ¼ 0:



ð4Þ
Note that the problem of numerical solution of systems of type (4) with completely continuous operators

and perturbed source data is an ill-posed one. To solve such systems, it is necessary to apply special

methods, the key one amongst others, due to its several advantages, being Tikhonov’s regularization

method (Tikhonov et al., 1990). Its implementation in this case consists in preliminary discretization of the

initial system (4). For this, in the time interval ½0; sinv
 being investigated, we select a uniform grid with the

step Ds and introduce the following designations:
Qp ¼ Qðp � DsÞ; Tp ¼ T ðp � DsÞ; Em ¼ Eðm � DsÞ; p ¼ 0; 1; 2; . . . ;mmax � 1;

m ¼ 1; 2; . . . ;mmax; mmax ¼ sinv=Ds:
Then in system (4), Q, T and E are mmax-dimensional vector-columns; AQE, ATE, AQ0 and AT0 are the finite-
difference analogs of the respective operators (the bottom triangular ðmmax � mmaxÞ-matrices). The values of
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the components of the latter are defined by the selected quadrature formula used for substituting the

integrals involved therein with finite sums (the trapezoids formula was used in this paper). For example, the

components of matrix AQE are defined by the formula:
AQEm;pþ1
�

xp ð1� coswÞ sinð ffiffiffia5p ðm�pÞDsÞffiffiffi
a5

p þ
P1

n¼1

R 1

cosw P2nðzÞdz
P3

r¼1 XðcÞ2n;r sinða2n;rðm� pÞDsÞ
� �
for m > p;

0 for m6 p;

8><
>:
where x0 ¼ 0:5; xp ¼ 1 ðp 6¼ 0Þ are the weights of the trapezoids quadrature formula.

The components of the remaining matrices are computed similarly.

In view of the fact that only vector Q is sought for, Tikhonov’s regularization method (Tikhonov et al.,

1990) is applied to the system of linear algebraic equations (SLAE)
AQ ¼ E; ð5Þ
where A ¼ AQE � ATEðAT0Þ�1AQ0 is the matrix ðmmax � mmaxÞ, to which the initial system (4) is reduced by

elementary mathematical manipulations.

As is well known, the solution of the problem of minimizing the smoothing parametric functional in

Tikhonov’s method is equivalent to solving a SLAE of the form
ðATAþ aCÞQ ¼ ATE; ð6Þ
where AT is a matrix transposed to A; a > 0 is the regularization parameter; C is a symmetrical tridiagonal

ðmmax � mmaxÞ-matrix in the following form:
C ¼

1þ Ds�2 �Ds�2 0 . . . 0 0

�Ds�2 1þ 2Ds�2 �Ds�2 . . . 0 0

0 �Ds�2 1þ 2Ds�2 . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 . . . 1þ 2Ds�2 �Ds�2

0 0 0 . . . �Ds�2 1þ Ds�2

2
66666664

3
77777775
:

In so doing, it is assumed that the sought for function is continuous in the time interval being investigated,

and that almost everywhere it has a square-integrated derivative.

The value of parameter a can be computed using the residual principle (Tikhonov et al., 1990), which
consists in matching the residual value for the regularized solution with the error level in the source data.

This principle can be written as
kE � AQk ¼ jkEk; ð7Þ
where j 2 ð0; 1
 is the relative residual factor (its value is the greater the greater the error).

Hence, a is defined so that the corresponding thereto vector Q, as the solution of the SLAE (6), would
ensure satisfying of Eq. (7). We note that an effective method of solving (6), with account of condition (7), is

described in the work of Gordonova (1973).

An alternative value of coefficient japt, and the corresponding thereto value of parameter aapt, can be

determined by analyzing for ‘‘saw-toothness’’ the temporal behavior of function QðtÞ, as a solution of the

SLAE (6), which satisfies condition (7) with different j. Having set the initial j1 equal, for instance, to 0.01,

the subsequent values of jn ðn ¼ 2; 3; . . . nmaxÞ for eliminating the indicated behavior of load QðtÞ are chosen
by increasing the previous one by the value of the selected step Djn, i.e. jnþ1 ¼ jn þ Djn. The alternative

value of japt, and hence, of aapt, is selected so as to reduce the level of ‘‘saw-toothness’’, retaining at the
same time the physical content of the load function, which is controlled by proper selection of the value nmax

ðjapt ¼ jnmaxþ1Þ.
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4. Numerical results

The following shell parameters have been accepted:
R ¼ 0:3 m; h ¼ 0:03 m; E ¼ 2:1� 1011 Pa; q ¼ 7800 kg=m3; m ¼ 1=3; k2s ¼ 6=5:
The ‘‘noisy’’ function ~euðc; sÞ ¼ �euðc; sÞ � ð1þ D � rðsÞÞ was accepted as the source data, where �euðc; sÞ is the
result of solving the direct problem at a known load QðsÞ; D is the relative error, D ¼ 0:05; and rðsÞ is the
random numbers function with the mathematical expectation in zero, rðsÞ 2 ½�1; 1
.

The values of other design parameters are as follows: sinv ¼ 15:71; Ds ¼ 0:209; w ¼ p=4; and c ¼ p=6.
Fig. 2 shows the unit strain �euðh; sÞ vs. time curve in point h ¼ c at QðsÞ ¼ H0 � ðHðsÞ � Hðs � 2pÞÞ

(H0 ¼ 105 H/m2 is the load intensity), which was accepted as the source data for the identification problem,

and which was obtained when solving the respective direct problem. In Fig. 3, the dashed line represents the

exact values of the sought for function QðsÞ, whereas the solid line represents the function QðsÞ computed
from system (6) with account of (7) at j ¼ japt.
Fig. 2. Source data for solving the identification problem.

Fig. 3. Result of solving the inverse problem (solid curve).
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5. Comparison with experimental data

Of interest is the comparison of results obtained for identification of loading with experimental inves-

tigations data. In the monograph (Vorobiev et al., 1989), an experimental investigation into non-stationary
strain of a hemispherical shell with a rigidly fixed edge is described. Elastic impact of steel balls dropped

from various heights with a shell was considered. To investigate the process of propagation of strain over

the shell meridian, several sensors were installed on the shell inner surface (the 1st sensor was installed in

the pole, and the remaining ones were installed along the meridian with a 9 mm step between the instal-

lation points). The measurement results were presented in the form of oscillograms, allowing to build the

stress distribution diagrams for the coordinate angle h at different points of time.

The procedure of comparing the theoretical design of this work with experimental results shown in Fig.

78 in Vorobiev et al. (1989) comprised two stages. The first stage, based on one of the stress oscillograms,
consists in defining (identifying) the contact load in the impact zone. In particular, we chose the oscillogram

corresponding to the designation ‘‘18 mm’’. The second stage consists in comparing the experimental re-

sults, defined by all the remaining oscillograms, with the theoretical results of solving the direct problem of

impulse strain in a shell under the effect of the known load.

The parameter recorded in work (Vorobiev et al., 1989) in point h ¼ c on the shell’s inner surface defines

the unit strain value along the meridian, which is written as (Filin, 1987)
ehðsÞ ¼
1

R� h=2
w0ðc; sÞ
	

þ o

oh
u0ðc; sÞ
	

� h
2

bðc; sÞ




:

As applied to the problem considered here, after straightforward manipulations with account of (2), we

obtain the following expression for ehðc; sÞ:
ehðc; sÞ ¼
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R� h=2

Z s
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X1
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�
P2nðcosðcÞÞðA2n � a2
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2nðcosðcÞÞ þ P 1
2nðcosðcÞÞctgðcÞÞ ða2ðC2n � a2

2n;rÞ � a3a9Þ þ a9h
2
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h ih i
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Q3

j¼1;j 6¼rða2
2n;j � a2

2n;rÞ
:

The values of the remaining coefficients included in (8) were given earlier.

Defining functions QðsÞ and T ðsÞ is reduced to the problem of finding a stable solution for the system of
operator equations (4), where operators AQE and ATE designate in this case:
AQEQ �
Z s

0

QðvÞ ð1
 

� coswÞ sinð
ffiffiffiffiffi
a5

p ðs � vÞÞffiffiffiffiffi
a5

p þ
X1
n¼1

Z 1

cosw
P2nðzÞdz

X3
r¼1

X��ðcÞ2n;r sinða2n;rðs � vÞÞ
!
dv;

ATET �
Z s

0

T ðvÞ 1

2R
sinð ffiffiffiffiffi

a5

p ðs � vÞÞffiffiffiffiffi
a5

p
 

þ
X1
n¼1

P2nð0Þ
X3
r¼1

X��ðcÞ2n;r sinða2n;rðs � vÞÞ
!
dv;
and EðsÞ ¼ ehðc; sÞ � ðR� h=2Þ=q0.
The algorithm of solving the given system is similar to that described above.

The values of the accepted geometric parameters of the shell correspond to those in work (Vorobiev

et al., 1989): R ¼ 0:2 m; h ¼ 0:00175 m.
The loading area can be defined approximately on the basis of Hertz’s theory of static compression of

two balls:
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w ¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
mbg

1� m2

E
þ 1� m2b

Eb

	 
,
1

R
þ 1

Rb

	 

3

vuut ;
where mb and Rb are the ball mass and radius (Rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mb=ð4pqbÞ3

p
¼ 0:0167 m at mb ¼ 0:152 kg); g is the

gravitational acceleration; Eb, mb, and qb are elastic constants, and the density of the ball material.

As the investigations carried out have shown, the value of w, for the investigated range of its change, has

no significant effect on the results of solving the inverse problem.

The regularization parameter a (see (6)) used during computation was computed using the residual

principle, for which the relative residual factor j was taken to be 0.05. The results obtained in the form of

function QðsÞ, describing the contact force action of the ball on the hemispherical shell, are shown in Fig. 4.

In this Figure, K ¼ maxð
P

Am;�Þ�1
(Am;� is the mth row of matrix A ¼ AQE � ATEðAT0Þ�1AQ0), and e0 is a

number used for scaling the source data (see Fig. 5).
Using the solution of the direct problem with the known temporal law of contact loading, the strain

changes in time were calculated for other points coinciding with the recording points indicated in work

(Vorobiev et al., 1989). The comparison results are shown in Fig. 5.

In the graphs in Fig. 5, the experimental curves are shown as dashed lines, and the design curves are

shown as solid ones. In each of the Figures, the distance from the recording points and unit strain com-

putations to the shell pole along the meridian is shown in mm, i.e. from the center of its impact loading.

In Figs. 4 and 5, value s1 ¼ 0:99, which was found by treating the experimental results presented in

Vorobiev et al. (1989). In so doing, it was taken that Ds ¼ 0:0225.
In finalizing the description of the comparison procedure, it is also necessary to mention the causes,

which may lead to inaccuracies in the theoretical and experimental results compared. The first cause is that

the identification procedure, in essence, ensures but only an approximation to the exact solution. The

second cause is that, when obtaining results for the direct problem of impact interaction of a ball with a

shell, a simplified variant of their interaction is used, which corresponds to a constant loading zone and to

independence of the contact pressure from the spatial coordinate. The third cause is that, inevitably, there

appear inaccuracies in the results obtained by experiment in the form of oscillograms and their treatment,

which were used as source data in the identification procedure. These causes appear to be the main ones,
though others are possible as well. For instance, the equations in Timoshenko’s theory, used for describing

the non-stationary behavior of a shell, simulate with a definite accuracy the physically real strain process

occurring therein. All these causes lead to inaccuracies in the values of parameters consisting, for instance,

in small negative values of the contact pressure (see Fig. 4).
Fig. 4. Result of identifying the contact force interaction.
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6. Conclusion

The paper presents the solution of the problem of identifying the external load acting axisymmetrically

on a hemispherical shell with a rigidly fixed edge. The described procedure of solving the problem allows to

determine the sought for force loading at different apex angles w.
The graphs shown in Figs. 3 and 5 prove the effectiveness of the developed method of solving the given

inverse problem, including the use of experimental data.
From the above presentation, it follows that the numerical results of solving the inverse problem depend

significantly on the proper selection of the relative residual factor j (see (7)). Provided information on the

degree of discrepancy of accurate source data �e and ‘‘noisy’’ data ~e as k�e � ~ek is available, the value of japt

can be readily computed using the residual principle. But since this value remains unknown, which agrees

with current measurement practice, the defining factor is the quality of analyzing the solution of system (6),

which satisfies (7).

In conclusion, let us stress the importance and topicality of the problems, one of which has been dis-

cussed in this paper. A list of applied problems, which can be solved by using the results obtained during the
solution of problems of such kind, is extensive. To date however there is but only a small number of works

dedicated to the problem dealt with in this paper, especially in the field of dynamics.
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